/* uLisp MSP430 Version 1.8 - www.ulisp.com David Johnson-Davies - www.technoblogy.com - 15th April 2017 Licensed under the MIT license: https://opensource.org/licenses/MIT */ #include #include #include // Compile options #define checkoverflow // #define resetautorun #define printfreespace #define serialmonitor // #define printgcs // C Macros #define nil NULL #define car(x) (((object *) (x))->car) #define cdr(x) (((object *) (x))->cdr) #define first(x) (((object *) (x))->car) #define second(x) (car(cdr(x))) #define cddr(x) (cdr(cdr(x))) #define third(x) (car(cdr(cdr(x)))) #define push(x, y) ((y) = cons((x),(y))) #define pop(y) ((y) = cdr(y)) #define numberp(x) ((x)->type == NUMBER) #define symbolp(x) ((x)->type == SYMBOL) #define stringp(x) ((x)->type == STRING) #define streamp(x) ((x)->type == STREAM) #define mark(x) (car(x) = (object *)(((unsigned int)(car(x))) | MARKBIT)) #define unmark(x) (car(x) = (object *)(((unsigned int)(car(x))) & MARKMASK)) #define marked(x) ((((unsigned int)(car(x))) & MARKBIT) != 0) #define MARKBIT 0x0001 #define MARKMASK 0xFFFE // Constants const int TRACEMAX = 3; // Number of traced functions enum type {ZERO=0, SYMBOL=2, NUMBER=4, STREAM=6, STRING=8, PAIR=10}; // STRING and PAIR must be last enum token { UNUSED, BRA, KET, QUO, DOT }; enum stream { SERIALSTREAM, I2CSTREAM, SPISTREAM }; enum function { SYMBOLS, NIL, TEE, NOTHING, STRINGFN, AMPREST, LAMBDA, LET, LETSTAR, CLOSURE, SPECIAL_FORMS, QUOTE, DEFUN, DEFVAR, SETQ, LOOP, PUSH, POP, INCF, DECF, SETF, DOLIST, DOTIMES, TRACE, UNTRACE, FORMILLIS, WITHI2C, WITHSPI, TAIL_FORMS, PROGN, RETURN, IF, COND, WHEN, UNLESS, AND, OR, FUNCTIONS, NOT, NULLFN, CONS, ATOM, LISTP, CONSP, NUMBERP, SYMBOLP, STREAMP, EQ, CAR, FIRST, CDR, REST, CAAR, CADR, SECOND, CDAR, CDDR, CAAAR, CAADR, CADAR, CADDR, THIRD, CDAAR, CDADR, CDDAR, CDDDR, LENGTH, LIST, REVERSE, NTH, ASSOC, MEMBER, APPLY, FUNCALL, APPEND, MAPC, MAPCAR, ADD, SUBTRACT, MULTIPLY, DIVIDE, MOD, ONEPLUS, ONEMINUS, ABS, RANDOM, MAX, MIN, NUMEQ, LESS, LESSEQ, GREATER, GREATEREQ, NOTEQ, PLUSP, MINUSP, ZEROP, ODDP, EVENP, STRINGP, STRINGEQ, CONCATENATE, SUBSEQ, LOGAND, LOGIOR, LOGXOR, LOGNOT, ASH, LOGBITP, EVAL, GLOBALS, LOCALS, MAKUNBOUND, BREAK, READ, PRIN1, PRINT, PRINC, TERPRI, READLINE, READBYTE, WRITEBYTE, RESTARTI2C, GC, ROOM, SAVEIMAGE, LOADIMAGE, CLS, PINMODE, DIGITALREAD, DIGITALWRITE, ANALOGREAD, ANALOGWRITE, DELAY, MILLIS, NOTE, EDIT, PPRINT, ENDFUNCTIONS }; // Typedefs typedef unsigned int symbol_t; typedef struct sobject { union { struct { sobject *car; sobject *cdr; }; struct { unsigned int type; union { symbol_t name; int integer; }; }; }; } object; typedef object *(*fn_ptr_type)(object *, object *); typedef struct { const char *string; fn_ptr_type fptr; int min; int max; } tbl_entry_t; // Workspace #define PERSIST __attribute__((section(".text"))) #define WORDALIGNED __attribute__((aligned (2))) #define BUFFERSIZE 18 #if defined(__MSP430F5529__) #define WORKSPACESIZE 1280 /* Cells (4*bytes) */ #define IMAGEDATASIZE 1280 /* Cells */ #define SYMBOLTABLESIZE 512 /* Bytes */ object Workspace[WORKSPACESIZE] WORDALIGNED; #elif defined(__MSP430FR5969__) #define WORKSPACESIZE 3328 /* Cells (4*bytes) */ #define IMAGEDATASIZE 1664 /* Cells */ #define SYMBOLTABLESIZE 1024 /* Bytes */ object Workspace[WORKSPACESIZE] PERSIST WORDALIGNED; #endif char SymbolTable[SYMBOLTABLESIZE]; // Global variables jmp_buf exception; unsigned int Freespace = 0; char ReturnFlag = 0; object *Freelist; char *SymbolTop = SymbolTable; extern uint8_t _end; int i2cCount; unsigned int TraceFn[TRACEMAX]; unsigned int TraceDepth[TRACEMAX]; object *GlobalEnv; object *GCStack = NULL; char BreakLevel = 0; char LastChar = 0; char LastPrint = 0; volatile char Escape = 0; char ExitEditor = 0; char PrintReadably = 1; // Forward references object *tee; object *tf_progn (object *form, object *env); object *eval (object *form, object *env); object *read (); void repl(object *env); void printobject (object *form); char *lookupbuiltin (symbol_t name); int lookupfn (symbol_t name); int builtin (char* n); void Display (char c); // Set up workspace void initworkspace () { Freelist = NULL; for (int i=WORKSPACESIZE-1; i>=0; i--) { object *obj = &Workspace[i]; car(obj) = NULL; cdr(obj) = Freelist; Freelist = obj; Freespace++; } } object *myalloc () { if (Freespace == 0) error(F("No room")); object *temp = Freelist; Freelist = cdr(Freelist); Freespace--; return temp; } inline void myfree (object *obj) { car(obj) = NULL; cdr(obj) = Freelist; Freelist = obj; Freespace++; } // Make each type of object object *number (int n) { object *ptr = myalloc(); ptr->type = NUMBER; ptr->integer = n; return ptr; } object *cons (object *arg1, object *arg2) { object *ptr = myalloc(); ptr->car = arg1; ptr->cdr = arg2; return ptr; } object *symbol (symbol_t name) { object *ptr = myalloc(); ptr->type = SYMBOL; ptr->name = name; return ptr; } object *stream (unsigned char streamtype, unsigned char address) { object *ptr = myalloc(); ptr->type = STREAM; ptr->integer = streamtype<<8 | address; return ptr; } // Garbage collection void markobject (object *obj) { MARK: if (obj == NULL) return; if (marked(obj)) return; object* arg = car(obj); unsigned int type = obj->type; mark(obj); if (type >= PAIR || type == ZERO) { // cons markobject(arg); obj = cdr(obj); goto MARK; } if (type == STRING) { obj = cdr(obj); while (obj != NULL) { arg = car(obj); mark(obj); obj = arg; } } } void sweep () { Freelist = NULL; Freespace = 0; for (int i=WORKSPACESIZE-1; i>=0; i--) { object *obj = &Workspace[i]; if (!marked(obj)) myfree(obj); else unmark(obj); } } void gc (object *form, object *env) { #if defined(printgcs) int start = Freespace; #endif markobject(tee); markobject(GlobalEnv); markobject(GCStack); markobject(form); markobject(env); sweep(); #if defined(printgcs) pchar('{'); pint(Freespace - start); pchar('}'); #endif } // Compact image void movepointer (object *from, object *to) { for (int i=0; itype) & MARKMASK; if (marked(obj) && (type >= STRING || type==ZERO)) { if (car(obj) == (object *)((unsigned int)from | MARKBIT)) car(obj) = (object *)((unsigned int)to | MARKBIT); if (cdr(obj) == from) cdr(obj) = to; } } // Fix strings for (int i=0; itype) & MARKMASK) == STRING) { obj = cdr(obj); while (obj != NULL) { if (cdr(obj) == to) cdr(obj) = from; obj = (object *)((unsigned int)(car(obj)) & MARKMASK); } } } } int compactimage (object **arg) { markobject(tee); markobject(GlobalEnv); markobject(GCStack); object *firstfree = Workspace; while (marked(firstfree)) firstfree++; object *obj = &Workspace[WORKSPACESIZE-1]; while (firstfree < obj) { if (marked(obj)) { car(firstfree) = car(obj); cdr(firstfree) = cdr(obj); unmark(obj); movepointer(obj, firstfree); if (GlobalEnv == obj) GlobalEnv = firstfree; if (GCStack == obj) GCStack = firstfree; if (*arg == obj) *arg = firstfree; while (marked(firstfree)) firstfree++; } obj--; } sweep(); return firstfree - Workspace; } // Save-image and load-image #if defined(__MSP430F5529__) #include "MspFlash.h" const int segmentsize = 0x200; // 512 unsigned char image[13*segmentsize] PERSIST; // We need 12*512 in the middle of this #define FLASH SEGPTR(image) int saveimage (object *arg) { unsigned int imagesize = compactimage(&arg); // Save to Flash - should always fit if (imagesize > IMAGEDATASIZE) { pfstring(F("Error: Image size too large: ")); pint(imagesize+2); pln(); GCStack = NULL; longjmp(exception, 1); } // Erase flash for (int i=0; i<12; i++) Flash.erase(FLASH + i*segmentsize); unsigned char *workstart = FLASH+8; Flash.write(FLASH, (unsigned char*)&imagesize, 2); Flash.write(FLASH+2, (unsigned char*)&arg, 2); Flash.write(FLASH+4, (unsigned char*)&GlobalEnv, 2); Flash.write(FLASH+6, (unsigned char*)&GCStack, 2); #if SYMBOLTABLESIZE > BUFFERSIZE Flash.write(FLASH+8, (unsigned char*)&SymbolTop, 2); Flash.write(FLASH+10, (unsigned char*)SymbolTable, SYMBOLTABLESIZE); workstart = FLASH + SYMBOLTABLESIZE + 10; #endif Flash.write(workstart, (unsigned char*)Workspace, imagesize*4); return imagesize; } int loadimage () { unsigned int imagesize; unsigned char *workstart = FLASH+8; Flash.read(FLASH, (unsigned char*)&imagesize, 2); Flash.read(FLASH+4, (unsigned char*)&GlobalEnv, 2); Flash.read(FLASH+6, (unsigned char*)&GCStack, 2); #if SYMBOLTABLESIZE > BUFFERSIZE Flash.read(FLASH+8, (unsigned char*)&SymbolTop, 2); Flash.read(FLASH+10, (unsigned char*)SymbolTable, SYMBOLTABLESIZE); workstart = FLASH + SYMBOLTABLESIZE + 10; #endif Flash.read(workstart, (unsigned char*)Workspace, imagesize*4); gc(NULL, NULL); return imagesize; } void autorunimage () { object *autorun; Flash.read(FLASH+2, (unsigned char*)&autorun, 2); if (autorun != NULL && (unsigned int)autorun != 0xFFFF) { loadimage(); apply(autorun, NULL, NULL); } } #elif defined(__MSP430FR5969__) struct image_struct { object *eval; unsigned int datasize; object *globalenv; object *gcstack; #if SYMBOLTABLESIZE > BUFFERSIZE char *symboltop; char table[SYMBOLTABLESIZE]; #endif object data[IMAGEDATASIZE]; }; struct image_struct image PERSIST; int saveimage (object *arg) { unsigned int imagesize = compactimage(&arg); // Save to Flash if (imagesize > IMAGEDATASIZE) { pfstring(F("Error: Image size too large: ")); pint(imagesize); pln(); GCStack = NULL; longjmp(exception, 1); } image.datasize = imagesize; image.eval = arg; image.globalenv = GlobalEnv; image.gcstack = GCStack; #if SYMBOLTABLESIZE > BUFFERSIZE image.symboltop = SymbolTop; for (int i=0; i BUFFERSIZE SymbolTop = image.symboltop; for (int i=0; itype; return type >= PAIR || type == ZERO; } boolean atom (object *x) { if (x == NULL) return true; unsigned int type = x->type; return type < PAIR && type != ZERO; } boolean listp (object *x) { if (x == NULL) return true; unsigned int type = x->type; return type >= PAIR || type == ZERO; } int toradix40 (char ch) { if (ch == 0) return 0; if (ch >= '0' && ch <= '9') return ch-'0'+30; ch = ch | 0x20; if (ch >= 'a' && ch <= 'z') return ch-'a'+1; return -1; // Invalid } int fromradix40 (int n) { if (n >= 1 && n <= 26) return 'a'+n-1; if (n >= 30 && n <= 39) return '0'+n-30; return 0; } int pack40 (char *buffer) { return (((toradix40(buffer[0]) * 40) + toradix40(buffer[1])) * 40 + toradix40(buffer[2])); } boolean valid40 (char *buffer) { return (toradix40(buffer[0]) >= 0 && toradix40(buffer[1]) >= 0 && toradix40(buffer[2]) >= 0); } int digitvalue (char d) { if (d>='0' && d<='9') return d-'0'; d = d | 0x20; if (d>='a' && d<='f') return d-'a'+10; return 16; } char *name (object *obj){ char *buffer = SymbolTop; buffer[3] = '\0'; if(obj->type != SYMBOL) error(F("Error in name")); symbol_t x = obj->name; if (x < ENDFUNCTIONS) return lookupbuiltin(x); else if (x >= 64000) return lookupsymbol(x); for (int n=2; n>=0; n--) { buffer[n] = fromradix40(x % 40); x = x / 40; } return buffer; } int integer (object *obj){ if(obj->type != NUMBER) error(F("not a number")); return obj->integer; } int istream (object *obj){ if(obj->type != STREAM) error(F("not a stream")); return obj->integer; } int issymbol (object *obj, symbol_t n) { return obj->type == SYMBOL && obj->name == n; } int eq (object *arg1, object *arg2) { int same_object = (arg1 == arg2); int same_symbol = (arg1->type == SYMBOL && arg2->type == SYMBOL && arg1->name == arg2->name); int same_number = (arg1->type == NUMBER && arg2->type == NUMBER && arg1->integer == arg2->integer); return (same_object || same_symbol || same_number); } int listlength (object *list) { int length = 0; while (list != NULL) { list = cdr(list); length++; } return length; } // String utilities void indent (int spaces) { for (int i=0; icar = cell; cell->car = NULL; cell->integer = *chars; *tail = cell; } else { *chars = *chars | ch; (*tail)->integer = *chars; *chars = 0; } } object *readstring (char delim) { object *obj = myalloc(); obj->type = STRING; char ch = gchar(); object *head = NULL; object *tail = NULL; int chars = 0; while (ch != delim) { if (ch == '\\') ch = gchar(); buildstring(ch, &chars, &head, &tail); ch = gchar(); } obj->cdr = head; return obj; } int stringlength (object *form) { int length = 0; form = cdr(form); while (form != NULL) { int chars = form->integer; if (chars & 0xFF) length++; if (chars & 0xFF00) length++; form = car(form); } return length; } char character (object *string, int n) { object *arg = cdr(string); int top = n>>1; for (int i=0; iinteger) & 0xFF; else ch = (arg->integer)>>8 & 0xFF; if (ch == 0) error(F("'subseq' index out of range")); return ch; } // Lookup variable in environment object *value (symbol_t n, object *env) { while (env != NULL) { object *pair = car(env); if (pair != NULL && car(pair)->name == n) return pair; env = cdr(env); } return nil; } object *findvalue (object *var, object *env) { symbol_t varname = var->name; object *pair = value(varname, env); if (pair == NULL) pair = value(varname, GlobalEnv); if (pair == NULL) error2(var,F("unknown variable")); return pair; } object *findtwin (object *var, object *env) { while (env != NULL) { object *pair = car(env); if (pair != NULL && car(pair) == var) return pair; env = cdr(env); } return NULL; } void dropframe (int tc, object **env) { if (tc) { while (*env != NULL && car(*env) != NULL) { pop(*env); } if (*env == NULL) error(F("no frame to drop")); } else { push(nil, *env); } } // Handling closures object *closure (object *fname, object *state, object *function, object *args, object **env) { int trace = tracing(fname->name); if (trace) { indent(TraceDepth[trace-1]<<1); pint(TraceDepth[trace-1]++); pchar(':'); pchar(' '); pchar('('); printobject(fname); } object *params = first(function); function = cdr(function); // Push state if not already in env while (state != NULL) { object *pair = first(state); if (findtwin(car(pair), *env) == NULL) push(pair, *env); state = cdr(state); } // Add arguments to environment while (params != NULL && args != NULL) { object *value; object *var = first(params); if (var->name == AMPREST) { params = cdr(params); var = first(params); value = args; args = NULL; } else { value = first(args); args = cdr(args); } push(cons(var,value), *env); params = cdr(params); if (trace) { pchar(' '); printobject(value); } } if (params != NULL) error2(fname, F("has too few parameters")); if (args != NULL) error2(fname, F("has too many parameters")); if (trace) { pchar(')'); pln(); } // Do an implicit progn return tf_progn(function, *env); } object *apply (object *function, object *args, object **env) { if (function->type == SYMBOL) { symbol_t name = function->name; int nargs = listlength(args); if (name >= ENDFUNCTIONS) error2(function, F("is not valid here")); if (nargslookupmax(name)) error2(function, F("has too many arguments")); return ((fn_ptr_type)lookupfn(name))(args, *env); } if (listp(function) && issymbol(car(function), LAMBDA)) { function = cdr(function); object *result = closure(NULL, NULL, function, args, env); return eval(result, *env); } if (listp(function) && issymbol(car(function), CLOSURE)) { function = cdr(function); object *result = closure(NULL, car(function), cdr(function), args, env); return eval(result, *env); } error2(function, F("is an illegal function")); return NULL; } // In-place operations object **place (object *args, object *env) { if (atom(args)) return &cdr(findvalue(args, env)); object* function = first(args); if (issymbol(function, CAR) || issymbol(function, FIRST)) { object *value = eval(second(args), env); if (!listp(value)) error(F("Can't take car")); return &car(value); } if (issymbol(function, CDR) || issymbol(function, REST)) { object *value = eval(second(args), env); if (!listp(value)) error(F("Can't take cdr")); return &cdr(value); } if (issymbol(function, NTH)) { int index = integer(eval(second(args), env)); object *list = eval(third(args), env); if (atom(list)) error(F("'nth' second argument is not a list")); while (index > 0) { list = cdr(list); if (list == NULL) error(F("'nth' index out of range")); index--; } return &car(list); } error(F("Illegal place")); return nil; } // Checked car and cdr inline object *carx (object *arg) { if (!listp(arg)) error(F("Can't take car")); if (arg == nil) return nil; return car(arg); } inline object *cdrx (object *arg) { if (!listp(arg)) error(F("Can't take cdr")); if (arg == nil) return nil; return cdr(arg); } // I2C interface uint8_t const TWI_SDA_PIN = 10; uint8_t const TWI_SCL_PIN = 9; void I2Cinit(bool enablePullup) { Wire.begin(); } inline uint8_t I2Cread(uint8_t last) { return Wire.read(); } inline bool I2Cwrite(uint8_t data) { return Wire.write(data); } bool I2Cstart(uint8_t address, uint8_t read) { if (read == 0) Wire.beginTransmission(address); else Wire.requestFrom(address, i2cCount); return true; } bool I2Crestart(uint8_t address, uint8_t read) { int error = (Wire.endTransmission(true) != 0); if (read == 0) Wire.beginTransmission(address); else Wire.requestFrom(address, i2cCount); return error ? false : true; } void I2Cstop(uint8_t read) { if (read == 0) Wire.endTransmission(); // Check for error? } // Check pins void checkanalogread (int pin) { #if defined(__MSP430F5529__) if (!(pin==2 || pin==6 || (pin>=23 && pin<=28))) error(F("'analogread' invalid pin")); #elif defined(__MSP430FR5969__) if (!(pin==5 || (pin>=11 && pin<=13) || pin==18 || pin==19 || pin==23 || pin==24)) error(F("'analogread' invalid pin")); #endif } void checkanalogwrite (int pin) { #if defined(__MSP430F5529__) if (!(pin==12 || pin==19 || (pin>=35 && pin<=40))) error(F("'analogwrite' invalid pin")); #elif defined(__MSP430FR5969__) if (!(pin==12 || pin==19 || (pin>=6 && pin<=15) || pin==18 || pin==19 || pin==21 || pin==22 || pin==26)) error(F("'analogwrite' invalid pin")); #endif } // Note const int scale[] PROGMEM = {4186,4435,4699,4978,5274,5588,5920,6272,6645,7040,7459,7902}; void playnote (int pin, int note, int octave) { int prescaler = 8 - octave - note/12; if (prescaler<0 || prescaler>8) error(F("'note' octave out of range")); tone(pin, pgm_read_word(&scale[note%12])>>prescaler); } void nonote (int pin) { noTone(pin); } // Special forms object *sp_quote (object *args, object *env) { (void) env; return first(args); } object *sp_defun (object *args, object *env) { (void) env; object *var = first(args); if (var->type != SYMBOL) error2(var, F("is not a symbol")); object *val = cons(symbol(LAMBDA), cdr(args)); object *pair = value(var->name,GlobalEnv); if (pair != NULL) { cdr(pair) = val; return var; } push(cons(var, val), GlobalEnv); return var; } object *sp_defvar (object *args, object *env) { object *var = first(args); if (var->type != SYMBOL) error2(var, F("is not a symbol")); object *val = eval(second(args), env); object *pair = value(var->name,GlobalEnv); if (pair != NULL) { cdr(pair) = val; return var; } push(cons(var, val), GlobalEnv); return var; } object *sp_setq (object *args, object *env) { object *arg = eval(second(args), env); object *pair = findvalue(first(args), env); cdr(pair) = arg; return arg; } object *sp_loop (object *args, object *env) { ReturnFlag = 0; object *start = args; for (;;) { args = start; while (args != NULL) { object *form = car(args); object *result = eval(form,env); if (ReturnFlag == 1) { ReturnFlag = 0; return result; } args = cdr(args); } } } object *sp_push (object *args, object *env) { object *item = eval(first(args), env); object **loc = place(second(args), env); push(item, *loc); return *loc; } object *sp_pop (object *args, object *env) { object **loc = place(first(args), env); object *result = car(*loc); pop(*loc); return result; } object *sp_incf (object *args, object *env) { object **loc = place(first(args), env); int increment = 1; int result = integer(*loc); args = cdr(args); if (args != NULL) increment = integer(eval(first(args), env)); #if defined(checkoverflow) if (increment < 1) { if (-32768 - increment > result) error(F("'incf' arithmetic overflow")); } else { if (32767 - increment < result) error(F("'incf' arithmetic overflow")); } #endif result = result + increment; *loc = number(result); return *loc; } object *sp_decf (object *args, object *env) { object **loc = place(first(args), env); int decrement = 1; int result = integer(*loc); args = cdr(args); if (args != NULL) decrement = integer(eval(first(args), env)); #if defined(checkoverflow) if (decrement < 1) { if (32767 + decrement < result) error(F("'decf' arithmetic overflow")); } else { if (-32768 + decrement > result) error(F("'decf' arithmetic overflow")); } #endif result = result - decrement; *loc = number(result); return *loc; } object *sp_setf (object *args, object *env) { object **loc = place(first(args), env); object *result = eval(second(args), env); *loc = result; return result; } object *sp_dolist (object *args, object *env) { object *params = first(args); object *var = first(params); object *result = nil; object *list = eval(second(params), env); if (!listp(list)) error(F("'dolist' argument is not a list")); push(list, GCStack); // Don't GC the list object *pair = cons(var,nil); push(pair,env); params = cdr(cdr(params)); if (params != NULL) result = car(params); object *forms = cdr(args); while (list != NULL) { cdr(pair) = first(list); list = cdr(list); eval(tf_progn(forms,env), env); } cdr(pair) = nil; pop(GCStack); return eval(result, env); } object *sp_dotimes (object *args, object *env) { object *params = first(args); object *var = first(params); object *result = nil; int count = integer(eval(second(params), env)); int index = 0; params = cdr(cdr(params)); if (params != NULL) result = car(params); object *pair = cons(var,number(0)); push(pair,env); object *forms = cdr(args); while (index < count) { cdr(pair) = number(index); index++; eval(tf_progn(forms,env), env); } cdr(pair) = number(index); return eval(result, env); } object *sp_trace (object *args, object *env) { (void) env; while (args != NULL) { trace(first(args)->name); args = cdr(args); } int i = 0; while (i < TRACEMAX) { if (TraceFn[i] != 0) args = cons(symbol(TraceFn[i]), args); i++; } return args; } object *sp_untrace (object *args, object *env) { (void) env; if (args == NULL) { int i = 0; while (i < TRACEMAX) { if (TraceFn[i] != 0) args = cons(symbol(TraceFn[i]), args); TraceFn[i] = 0; i++; } } else { while (args != NULL) { untrace(first(args)->name); args = cdr(args); } } return args; } object *sp_formillis (object *args, object *env) { object *param = first(args); unsigned long start = millis(); unsigned long now, total = 0; if (param != NULL) total = integer(first(param)); eval(tf_progn(cdr(args),env), env); do now = millis() - start; while (now < total); if (now <= 32767) return number(now); return nil; } object *sp_withi2c (object *args, object *env) { object *params = first(args); object *var = first(params); int address = integer(eval(second(params), env)); params = cddr(params); int read = 0; // Write i2cCount = 0; if (params != NULL) { object *rw = eval(first(params), env); if (numberp(rw)) i2cCount = integer(rw); read = (rw != NULL); } I2Cinit(1); // Pullups object *pair = cons(var, (I2Cstart(address, read)) ? stream(I2CSTREAM, address) : nil); push(pair,env); object *forms = cdr(args); object *result = eval(tf_progn(forms,env), env); I2Cstop(read); return result; } object *sp_withspi (object *args, object *env) { object *params = first(args); object *var = first(params); int pin = integer(eval(second(params), env)); int divider = 0, mode = 0, bitorder = 1; object *pair = cons(var, stream(SPISTREAM, pin)); push(pair,env); SPI.begin(); params = cddr(params); if (params != NULL) { int d = integer(eval(first(params), env)); if (d<1 || d>7) error(F("'with-spi' invalid divider")); if (d == 7) divider = 3; else if (d & 1) divider = (d>>1) + 4; else divider = (d>>1) - 1; params = cdr(params); if (params != NULL) { bitorder = (eval(first(params), env) == NULL); params = cdr(params); if (params != NULL) mode = integer(eval(first(params), env)); } } pinMode(pin, OUTPUT); digitalWrite(pin, LOW); SPI.setBitOrder(bitorder); SPI.setClockDivider(divider); SPI.setDataMode(mode); object *forms = cdr(args); object *result = eval(tf_progn(forms,env), env); digitalWrite(pin, HIGH); SPI.end(); return result; } // Tail-recursive forms object *tf_progn (object *args, object *env) { if (args == NULL) return nil; object *more = cdr(args); while (more != NULL) { eval(car(args), env); args = more; more = cdr(args); } return car(args); } object *tf_return (object *args, object *env) { ReturnFlag = 1; return tf_progn(args, env); } object *tf_if (object *args, object *env) { if (eval(first(args), env) != nil) return second(args); return third(args); } object *tf_cond (object *args, object *env) { while (args != NULL) { object *clause = first(args); object *test = eval(first(clause), env); object *forms = cdr(clause); if (test != nil) { if (forms == NULL) return test; else return tf_progn(forms, env); } args = cdr(args); } return nil; } object *tf_when (object *args, object *env) { if (eval(first(args), env) != nil) return tf_progn(cdr(args),env); else return nil; } object *tf_unless (object *args, object *env) { if (eval(first(args), env) != nil) return nil; else return tf_progn(cdr(args),env); } object *tf_and (object *args, object *env) { if (args == NULL) return tee; object *more = cdr(args); while (more != NULL) { if (eval(car(args), env) == NULL) return nil; args = more; more = cdr(args); } return car(args); } object *tf_or (object *args, object *env) { object *more = cdr(args); while (more != NULL) { object *result = eval(car(args), env); if (result != NULL) return result; args = more; more = cdr(args); } return car(args); } // Core functions object *fn_not (object *args, object *env) { (void) env; return (first(args) == nil) ? tee : nil; } object *fn_cons (object *args, object *env) { (void) env; return cons(first(args),second(args)); } object *fn_atom (object *args, object *env) { (void) env; return atom(first(args)) ? tee : nil; } object *fn_listp (object *args, object *env) { (void) env; return listp(first(args)) ? tee : nil; } object *fn_consp (object *args, object *env) { (void) env; return consp(first(args)) ? tee : nil; } object *fn_numberp (object *args, object *env) { (void) env; return numberp(first(args)) ? tee : nil; } object *fn_symbolp (object *args, object *env) { (void) env; return symbolp(first(args)) ? tee : nil; } object *fn_streamp (object *args, object *env) { (void) env; return streamp(first(args)) ? tee : nil; } object *fn_eq (object *args, object *env) { (void) env; return eq(first(args), second(args)) ? tee : nil; } // List functions object *fn_car (object *args, object *env) { (void) env; return carx(first(args)); } object *fn_cdr (object *args, object *env) { (void) env; return cdrx(first(args)); } object *fn_caar (object *args, object *env) { (void) env; return carx(carx(first(args))); } object *fn_cadr (object *args, object *env) { (void) env; return carx(cdrx(first(args))); } object *fn_cdar (object *args, object *env) { (void) env; return cdrx(carx(first(args))); } object *fn_cddr (object *args, object *env) { (void) env; return cdrx(cdrx(first(args))); } object *fn_caaar (object *args, object *env) { (void) env; return carx(carx(carx(first(args)))); } object *fn_caadr (object *args, object *env) { (void) env; return carx(carx(cdrx(first(args)))); } object *fn_cadar (object *args, object *env) { (void) env; return carx(cdrx(carx(first(args)))); } object *fn_caddr (object *args, object *env) { (void) env; return carx(cdrx(cdrx(first(args)))); } object *fn_cdaar (object *args, object *env) { (void) env; return cdrx(carx(carx(first(args)))); } object *fn_cdadr (object *args, object *env) { (void) env; return cdrx(carx(cdrx(first(args)))); } object *fn_cddar (object *args, object *env) { (void) env; return cdrx(cdrx(carx(first(args)))); } object *fn_cdddr (object *args, object *env) { (void) env; return cdrx(cdrx(cdrx(first(args)))); } object *fn_length (object *args, object *env) { (void) env; object *arg = first(args); if (listp(arg)) return number(listlength(arg)); if (!stringp(arg)) error(F("'length' argument is not a list or string")); return number(stringlength(arg)); } object *fn_list (object *args, object *env) { (void) env; return args; } object *fn_reverse (object *args, object *env) { (void) env; object *list = first(args); if (!listp(list)) error(F("'reverse' argument is not a list")); object *result = NULL; while (list != NULL) { push(first(list),result); list = cdr(list); } return result; } object *fn_nth (object *args, object *env) { (void) env; int n = integer(first(args)); object *list = second(args); if (!listp(list)) error(F("'nth' second argument is not a list")); while (list != NULL) { if (n == 0) return car(list); list = cdr(list); n--; } return nil; } object *fn_assoc (object *args, object *env) { (void) env; object *key = first(args); object *list = second(args); if (!listp(list)) error(F("'assoc' second argument is not a list")); while (list != NULL) { object *pair = first(list); if (eq(key,car(pair))) return pair; list = cdr(list); } return nil; } object *fn_member (object *args, object *env) { (void) env; object *item = first(args); object *list = second(args); if (!listp(list)) error(F("'member' second argument is not a list")); while (list != NULL) { if (eq(item,car(list))) return list; list = cdr(list); } return nil; } object *fn_apply (object *args, object *env) { object *previous = NULL; object *last = args; while (cdr(last) != NULL) { previous = last; last = cdr(last); } if (!listp(car(last))) error(F("'apply' last argument is not a list")); cdr(previous) = car(last); return apply(first(args), cdr(args), &env); } object *fn_funcall (object *args, object *env) { return apply(first(args), cdr(args), &env); } object *fn_append (object *args, object *env) { (void) env; object *head = NULL; object *tail = NULL; while (args != NULL) { object *list = first(args); if (!listp(list)) error(F("'append' argument is not a list")); while (list != NULL) { object *obj = cons(first(list),NULL); if (head == NULL) { head = obj; tail = obj; } else { cdr(tail) = obj; tail = obj; } list = cdr(list); } args = cdr(args); } return head; } object *fn_mapc (object *args, object *env) { object *function = first(args); object *list1 = second(args); object *result = list1; if (!listp(list1)) error(F("'mapc' second argument is not a list")); object *list2 = cddr(args); if (list2 != NULL) { list2 = car(list2); if (!listp(list2)) error(F("'mapc' third argument is not a list")); } if (list2 != NULL) { while (list1 != NULL && list2 != NULL) { apply(function, cons(car(list1),cons(car(list2),NULL)), &env); list1 = cdr(list1); list2 = cdr(list2); } } else { while (list1 != NULL) { apply(function, cons(car(list1),NULL), &env); list1 = cdr(list1); } } return result; } object *fn_mapcar (object *args, object *env) { object *function = first(args); object *list1 = second(args); if (!listp(list1)) error(F("'mapcar' second argument is not a list")); object *list2 = cddr(args); if (list2 != NULL) { list2 = car(list2); if (!listp(list2)) error(F("'mapcar' third argument is not a list")); } object *head = NULL; object *tail = NULL; if (list2 != NULL) { while (list1 != NULL && list2 != NULL) { object *result = apply(function, cons(car(list1),cons(car(list2),NULL)), &env); object *obj = cons(result,NULL); if (head == NULL) { head = obj; push(head,GCStack); tail = obj; } else { cdr(tail) = obj; tail = obj; } list1 = cdr(list1); list2 = cdr(list2); } } else { while (list1 != NULL) { object *result = apply(function, cons(car(list1),NULL), &env); object *obj = cons(result,NULL); if (head == NULL) { head = obj; push(head,GCStack); tail = obj; } else { cdr(tail) = obj; tail = obj; } list1 = cdr(list1); } } pop(GCStack); return head; } // Arithmetic functions object *fn_add (object *args, object *env) { (void) env; int result = 0; while (args != NULL) { int temp = integer(car(args)); #if defined(checkoverflow) if (temp < 1) { if (-32768 - temp > result) error(F("'+' arithmetic overflow")); } else { if (32767 - temp < result) error(F("'+' arithmetic overflow")); } #endif result = result + temp; args = cdr(args); } return number(result); } object *fn_subtract (object *args, object *env) { (void) env; int result = integer(car(args)); args = cdr(args); if (args == NULL) { #if defined(checkoverflow) if (result == -32768) error(F("'-' arithmetic overflow")); #endif return number(-result); } while (args != NULL) { int temp = integer(car(args)); #if defined(checkoverflow) if (temp < 1) { if (32767 + temp < result) error(F("'-' arithmetic overflow")); } else { if (-32768 + temp > result) error(F("'-' arithmetic overflow")); } #endif result = result - temp; args = cdr(args); } return number(result); } object *fn_multiply (object *args, object *env) { (void) env; int result = 1; while (args != NULL){ #if defined(checkoverflow) signed long temp = (signed long) result * integer(car(args)); if ((temp > 32767) || (temp < -32768)) error(F("'*' arithmetic overflow")); result = temp; #else result = result * integer(car(args)); #endif args = cdr(args); } return number(result); } object *fn_divide (object *args, object *env) { (void) env; int result = integer(first(args)); args = cdr(args); while (args != NULL) { int arg = integer(car(args)); if (arg == 0) error(F("Division by zero")); #if defined(checkoverflow) if ((result == -32768) && (arg == -1)) error(F("'/' arithmetic overflow")); #endif result = result / arg; args = cdr(args); } return number(result); } object *fn_mod (object *args, object *env) { (void) env; int arg1 = integer(first(args)); int arg2 = integer(second(args)); if (arg2 == 0) error(F("Division by zero")); int r = arg1 % arg2; if ((arg1<0) != (arg2<0)) r = r + arg2; return number(r); } object *fn_oneplus (object *args, object *env) { (void) env; int result = integer(first(args)); #if defined(checkoverflow) if (result == 32767) error(F("'1+' arithmetic overflow")); #endif return number(result + 1); } object *fn_oneminus (object *args, object *env) { (void) env; int result = integer(first(args)); #if defined(checkoverflow) if (result == -32768) error(F("'1-' arithmetic overflow")); #endif return number(result - 1); } object *fn_abs (object *args, object *env) { (void) env; int result = integer(first(args)); #if defined(checkoverflow) if (result == -32768) error(F("'abs' arithmetic overflow")); #endif return number(abs(result)); } object *fn_random (object *args, object *env) { (void) env; int arg = integer(first(args)); return number(random(arg)); } object *fn_max (object *args, object *env) { (void) env; int result = integer(first(args)); args = cdr(args); while (args != NULL) { result = max(result,integer(car(args))); args = cdr(args); } return number(result); } object *fn_min (object *args, object *env) { (void) env; int result = integer(first(args)); args = cdr(args); while (args != NULL) { result = min(result,integer(car(args))); args = cdr(args); } return number(result); } // Arithmetic comparisons object *fn_numeq (object *args, object *env) { (void) env; int arg1 = integer(first(args)); args = cdr(args); while (args != NULL) { int arg2 = integer(first(args)); if (!(arg1 == arg2)) return nil; arg1 = arg2; args = cdr(args); } return tee; } object *fn_less (object *args, object *env) { (void) env; int arg1 = integer(first(args)); args = cdr(args); while (args != NULL) { int arg2 = integer(first(args)); if (!(arg1 < arg2)) return nil; arg1 = arg2; args = cdr(args); } return tee; } object *fn_lesseq (object *args, object *env) { (void) env; int arg1 = integer(first(args)); args = cdr(args); while (args != NULL) { int arg2 = integer(first(args)); if (!(arg1 <= arg2)) return nil; arg1 = arg2; args = cdr(args); } return tee; } object *fn_greater (object *args, object *env) { (void) env; int arg1 = integer(first(args)); args = cdr(args); while (args != NULL) { int arg2 = integer(first(args)); if (!(arg1 > arg2)) return nil; arg1 = arg2; args = cdr(args); } return tee; } object *fn_greatereq (object *args, object *env) { (void) env; int arg1 = integer(first(args)); args = cdr(args); while (args != NULL) { int arg2 = integer(first(args)); if (!(arg1 >= arg2)) return nil; arg1 = arg2; args = cdr(args); } return tee; } object *fn_noteq (object *args, object *env) { (void) env; while (args != NULL) { object *nargs = args; int arg1 = integer(first(nargs)); nargs = cdr(nargs); while (nargs != NULL) { int arg2 = integer(first(nargs)); if (arg1 == arg2) return nil; nargs = cdr(nargs); } args = cdr(args); } return tee; } object *fn_plusp (object *args, object *env) { (void) env; int arg = integer(first(args)); if (arg > 0) return tee; else return nil; } object *fn_minusp (object *args, object *env) { (void) env; int arg = integer(first(args)); if (arg < 0) return tee; else return nil; } object *fn_zerop (object *args, object *env) { (void) env; int arg = integer(first(args)); if (arg == 0) return tee; else return nil; } object *fn_oddp (object *args, object *env) { (void) env; int arg = integer(first(args)); if ((arg & 1) == 1) return tee; else return nil; } object *fn_evenp (object *args, object *env) { (void) env; int arg = integer(first(args)); if ((arg & 1) == 0) return tee; else return nil; } // Strings object *fn_stringp (object *args, object *env) { (void) env; object *arg1 = first(args); return stringp(arg1) ? tee : nil; } object *fn_stringeq (object *args, object *env) { (void) env; object *arg1 = first(args); if (!stringp(arg1)) error(F("'string=' first argument is not a string")); object *arg2 = second(args); if (!stringp(arg2)) error(F("'string=' second argument is not a string")); arg1 = cdr(arg1); arg2 = cdr(arg2); while ((arg1 != NULL) || (arg2 != NULL)) { if ((arg1 == NULL) || (arg2 == NULL) || (arg1->integer != arg2->integer)) return nil; arg1 = car(arg1); arg2 = car(arg2); } return tee; } object *fn_concatenate (object *args, object *env) { (void) env; object *arg = first(args); symbol_t name = arg->name; if (name != STRINGFN) error(F("Only string result supported")); args = cdr(args); object *result = myalloc(); result->type = STRING; object *head = NULL; object *tail = NULL; int chars = 0; while (args != NULL) { object *obj = first(args); if (obj->type != STRING) error2(obj, F("not a string")); obj = cdr(obj); while (obj != NULL) { int pair = obj->integer; while (pair != 0) { char ch = pair>>8 & 0xFF; buildstring(ch, &chars, &head, &tail); pair = pair<<8; } obj = car(obj); } args = cdr(args); } result->cdr = head; return result; } object *fn_subseq (object *args, object *env) { (void) env; object *arg = first(args); if (!stringp(arg)) error(F("'subseq' first argument is not a string")); int start = integer(second(args)); int end; args = cddr(args); if (args != NULL) end = integer(car(args)); else end = stringlength(arg); object *result = myalloc(); result->type = STRING; object *head = NULL; object *tail = NULL; int chars = 0; for (int i=start; icdr = head; return result; } // Bitwise operators object *fn_logand (object *args, object *env) { (void) env; unsigned int result = 0xFFFF; while (args != NULL) { result = result & integer(first(args)); args = cdr(args); } return number(result); } object *fn_logior (object *args, object *env) { (void) env; unsigned int result = 0; while (args != NULL) { result = result | integer(first(args)); args = cdr(args); } return number(result); } object *fn_logxor (object *args, object *env) { (void) env; unsigned int result = 0; while (args != NULL) { result = result ^ integer(first(args)); args = cdr(args); } return number(result); } object *fn_lognot (object *args, object *env) { (void) env; int result = integer(car(args)); return number(~result); } object *fn_ash (object *args, object *env) { (void) env; int value = integer(first(args)); int count = integer(second(args)); if (count >= 0) return number(value << count); else return number(value >> abs(count)); } object *fn_logbitp (object *args, object *env) { (void) env; int index = integer(first(args)); int value = integer(second(args)); return (bitRead(value, index) == 1) ? tee : nil; } // System functions object *fn_eval (object *args, object *env) { return eval(first(args), env); } object *fn_globals (object *args, object *env) { (void) args; if (GlobalEnv == NULL) return nil; return fn_mapcar(cons(symbol(CAR),cons(GlobalEnv,nil)), env); } object *fn_locals (object *args, object *env) { (void) args; return env; } object *fn_makunbound (object *args, object *env) { (void) args; (void) env; object *key = first(args); deletesymbol(key->name); object *list = GlobalEnv; object *prev = NULL; while (list != NULL) { object *pair = first(list); if (eq(key,car(pair))) { if (prev == NULL) GlobalEnv = cdr(list); else cdr(prev) = cdr(list); return key; } prev = list; list = cdr(list); } error2(key, F("not found")); return nil; } object *fn_break (object *args, object *env) { (void) args; pfstring(F("\rBreak!\r")); BreakLevel++; repl(env); BreakLevel--; return nil; } object *fn_read (object *args, object *env) { (void) args; (void) env; return read(); } object *fn_prin1 (object *args, object *env) { (void) env; object *obj = first(args); printobject(obj); return obj; } object *fn_print (object *args, object *env) { (void) env; pln(); object *obj = first(args); printobject(obj); pchar(' '); return obj; } object *fn_princ (object *args, object *env) { (void) env; object *obj = first(args); char temp = PrintReadably; PrintReadably = 0; printobject(obj); PrintReadably = temp; return obj; } object *fn_terpri (object *args, object *env) { (void) args, (void) env; pln(); return nil; } object *fn_readline (object *args, object *env) { (void) args, (void) env; return readstring('\r'); } object *fn_readbyte (object *args, object *env) { (void) env; int stream = SERIALSTREAM<<8; int last = 0; if (args != NULL) stream = istream(first(args)); args = cdr(args); if (args != NULL) last = (first(args) != NULL); if (stream>>8 == I2CSTREAM) { if (i2cCount >= 0) i2cCount--; return number(I2Cread((i2cCount == 0) || last)); } else if (stream>>8 == SPISTREAM) return number(SPI.transfer(0)); else if (stream == SERIALSTREAM<<8) return number(gchar()); else error(F("'read-byte' unknown stream type")); return nil; } object *fn_writebyte (object *args, object *env) { (void) env; object *val = first(args); int value = integer(val); int stream = SERIALSTREAM<<8; args = cdr(args); if (args != NULL) stream = istream(first(args)); if (stream>>8 == I2CSTREAM) return (I2Cwrite(value)) ? tee : nil; else if (stream>>8 == SPISTREAM) return number(SPI.transfer(value)); else if (stream == SERIALSTREAM<<8) pchar(value); else error(F("'write-byte' unknown stream type")); return nil; } object *fn_restarti2c (object *args, object *env) { (void) env; int stream = first(args)->integer; args = cdr(args); int read = 0; // Write i2cCount = 0; if (args != NULL) { object *rw = first(args); if (numberp(rw)) i2cCount = integer(rw); read = (rw != NULL); } int address = stream & 0xFF; if (stream>>8 != I2CSTREAM) error(F("'restart' not i2c")); return I2Crestart(address, read) ? tee : nil; } object *fn_gc (object *obj, object *env) { unsigned long start = micros(); int initial = Freespace; gc(obj, env); pfstring(F("Space: ")); pint(Freespace - initial); pfstring(F(" bytes, Time: ")); pint(micros() - start); pfstring(F(" uS\r")); return nil; } object *fn_room (object *args, object *env) { (void) args, (void) env; return number(Freespace); } object *fn_saveimage (object *args, object *env) { if (args != NULL) args = eval(first(args), env); return number(saveimage(args)); } object *fn_loadimage (object *args, object *env) { (void) args, (void) env; return number(loadimage()); } object *fn_cls(object *args, object *env) { (void) args, (void) env; pchar(12); return nil; } // Arduino procedures object *fn_pinmode (object *args, object *env) { (void) env; int pin = integer(first(args)); object *mode = second(args); if (mode->type == NUMBER) pinMode(pin, mode->integer); else pinMode(pin, (mode != nil)); return nil; } object *fn_digitalread (object *args, object *env) { (void) env; int pin = integer(first(args)); if(digitalRead(pin) != 0) return tee; else return nil; } object *fn_digitalwrite (object *args, object *env) { (void) env; int pin = integer(first(args)); object *mode = second(args); digitalWrite(pin, (mode != nil)); return mode; } object *fn_analogread (object *args, object *env) { (void) env; int pin = integer(first(args)); checkanalogread(pin); return number(analogRead(pin)); } object *fn_analogwrite (object *args, object *env) { (void) env; int pin = integer(first(args)); checkanalogwrite(pin); object *value = second(args); analogWrite(pin, integer(value)); return value; } object *fn_delay (object *args, object *env) { (void) env; object *arg1 = first(args); delay(integer(arg1)); return arg1; } object *fn_millis (object *args, object *env) { (void) args, (void) env; return number(millis()); } object *fn_note (object *args, object *env) { (void) env; static int pin = 255; if (args != NULL) { pin = integer(first(args)); int note = integer(second(args)); int octave = 0; if (cddr(args) != NULL) octave = integer(third(args)); playnote(pin, note, octave); } else nonote(pin); return nil; } // Tree Editor object *fn_edit (object *args, object *env) { object *fun = first(args); object *pair = findvalue(fun, env); ExitEditor = 0; object *arg = edit(eval(fun, env)); cdr(pair) = arg; return arg; } object *edit(object *fun) { while (1) { if (ExitEditor) return fun; char c = gchar(); if (c == 'q') ExitEditor = 1; else if (c == 'b') return fun; else if (c == 'r') fun = read(); else if (c == '\r') { pfl(); superprint(fun, 0); pln(); } else if (c == 'c') fun = cons(read(), fun); else if (atom(fun)) pchar('!'); else if (c == 'd') fun = cons(car(fun), edit(cdr(fun))); else if (c == 'a') fun = cons(edit(car(fun)), cdr(fun)); else if (c == 'x') fun = cdr(fun); else pchar('?'); } } // Pretty printer const int ppindent = 2; int ppwidth = 80; int atomwidth (object *obj) { if (obj == NULL) return 3; if (obj->type == NUMBER) { int w = 1; int n = obj->integer; if (n < 0) { n = -n; w++; } while (n >= 10) { n = n/10; w++; } return w; } if (obj->type == STRING) return stringlength(obj); int w = 0; char *s = name(obj); while (*s++) w++; return w; } boolean quoted (object *obj) { return (consp(obj) && (car(obj)->name == QUOTE) && consp(cdr(obj)) && (cddr(obj) == NULL)); } int subwidth (object *obj, int w) { if (atom(obj)) return w - atomwidth(obj); if (quoted(obj)) return subwidthlist(car(cdr(obj)), w - 1); return subwidthlist(obj, w - 1); } int subwidthlist (object *form, int w) { while (form != NULL && w >= 0) { if (atom(form)) return w - (2 + atomwidth(form)); w = subwidth(car(form), w - 1); form = cdr(form); } return w; } void superprint (object *form, int lm) { if (atom(form)) printobject(form); else if (quoted(form)) { pchar('\''); superprint(car(cdr(form)), lm + 1); } else if (subwidth(form, ppwidth - lm) >= 0) supersub(form, lm + ppindent, 0); else supersub(form, lm + ppindent, 1); } const int ppspecials = 8; const char ppspecial[ppspecials] PROGMEM = { IF, SETQ, TEE, LET, LETSTAR, LAMBDA, WHEN, UNLESS }; void supersub (object *form, int lm, int super) { int special = 0, separate = 1; object *arg = car(form); if (symbolp(arg)) { int name = arg->name; if (name == DEFUN) special = 2; else for (int i=0; i 1535) error(F("Too many long symbols")); return i + 64000; // First number unused by radix40 } int lookupfn(symbol_t name) { return pgm_read_word(&lookup_table[name].fptr); } int lookupmin(symbol_t name) { return pgm_read_word(&lookup_table[name].min); } int lookupmax(symbol_t name) { return pgm_read_word(&lookup_table[name].max); } char *lookupbuiltin (symbol_t name) { char *buffer = SymbolTop; strcpy_P(buffer, (char *)(pgm_read_word(&lookup_table[name].string))); return buffer; } char *lookupsymbol (symbol_t name) { char *p = SymbolTable; int i=name-64000; while (i > 0 && p < SymbolTop) {p = p + strlen(p) + 1; i--; } if (p == SymbolTop) return NULL; else return p; } void deletesymbol (symbol_t name) { char *p = lookupsymbol(name); if (p == NULL) return; char *q = p + strlen(p) + 1; *p = '\0'; p++; while (q < SymbolTop) *(p++) = *(q++); SymbolTop = p; } // Main evaluator object *eval (object *form, object *env) { int TC=0; EVAL: // Enough space? if (Freespace < 20) gc(form, env); if (_end != 0xA5) error(F("Stack overflow")); // Escape if (Escape) { Escape = 0; error(F("Escape!"));} #if defined (serialmonitor) if (Serial.read() == '~') error(F("Escape!")); #endif if (form == NULL) return nil; if ((form->type == NUMBER) || (form->type == STRING)) return form; if (form->type == SYMBOL) { symbol_t name = form->name; if (name == NIL) return nil; object *pair = value(name, env); if (pair != NULL) return cdr(pair); pair = value(name, GlobalEnv); if (pair != NULL) return cdr(pair); else if (name <= ENDFUNCTIONS) return form; error2(form, F("undefined")); } // It's a list object *function = car(form); object *args = cdr(form); // List starts with a symbol? if (function->type == SYMBOL) { symbol_t name = function->name; if ((name == LET) || (name == LETSTAR)) { int TCstart = TC; object *assigns = first(args); object *forms = cdr(args); object *newenv = env; while (assigns != NULL) { object *assign = car(assigns); if (consp(assign)) push(cons(first(assign),eval(second(assign),env)), newenv); else push(cons(assign,nil), newenv); if (name == LETSTAR) env = newenv; assigns = cdr(assigns); } env = newenv; form = tf_progn(forms,env); TC = TCstart; goto EVAL; } if (name == LAMBDA) { if (env == NULL) return form; object *envcopy = NULL; while (env != NULL) { object *pair = first(env); if (pair != NULL) { object *val = cdr(pair); if (val->type == NUMBER) val = number(val->integer); push(cons(car(pair), val), envcopy); } env = cdr(env); } return cons(symbol(CLOSURE), cons(envcopy,args)); } if ((name > SPECIAL_FORMS) && (name < TAIL_FORMS)) { return ((fn_ptr_type)lookupfn(name))(args, env); } if ((name > TAIL_FORMS) && (name < FUNCTIONS)) { form = ((fn_ptr_type)lookupfn(name))(args, env); TC = 1; goto EVAL; } } // Evaluate the parameters - result in head object *fname = car(form); int TCstart = TC; object *head = cons(eval(car(form), env), NULL); push(head, GCStack); // Don't GC the result list object *tail = head; form = cdr(form); int nargs = 0; while (form != NULL){ object *obj = cons(eval(car(form),env),NULL); cdr(tail) = obj; tail = obj; form = cdr(form); nargs++; } function = car(head); args = cdr(head); if (function->type == SYMBOL) { symbol_t name = function->name; if (name >= ENDFUNCTIONS) error2(fname, F("is not valid here")); if (nargslookupmax(name)) error2(fname, F("has too many arguments")); object *result = ((fn_ptr_type)lookupfn(name))(args, env); pop(GCStack); return result; } if (listp(function) && issymbol(car(function), LAMBDA)) { dropframe(TCstart, &env); form = closure(fname, NULL, cdr(function), args, &env); pop(GCStack); int trace = tracing(fname->name); if (trace) { object *result = eval(form, env); indent((--(TraceDepth[trace-1]))<<1); pint(TraceDepth[trace-1]); pchar(':'); pchar(' '); printobject(fname); pfstring(F(" returned ")); printobject(result); pln(); return result; } else { TC = 1; goto EVAL; } } if (listp(function) && issymbol(car(function), CLOSURE)) { function = cdr(function); dropframe(TCstart, &env); form = closure(fname, car(function), cdr(function), args, &env); pop(GCStack); TC = 1; goto EVAL; } error2(fname, F("is an illegal function")); return nil; } // Input/Output // Print functions void pchar (char c) { LastPrint = c; Serial.write(c); if (c == '\r') Serial.write('\n'); } void pstring (char *s) { while (*s) pchar(*s++); } void printstring (object *form) { if (PrintReadably) pchar('"'); form = cdr(form); while (form != NULL) { int chars = form->integer; char ch = chars>>8 & 0xFF; if (PrintReadably && ch == '"') pchar('\\'); pchar(ch); ch = chars & 0xFF; if (PrintReadably && ch == '"') pchar('\\'); if (ch) pchar(ch); form = car(form); } if (PrintReadably) pchar('"'); } void pfstring (const __FlashStringHelper *s) { PGM_P p = reinterpret_cast(s); while (1) { char c = pgm_read_byte(p++); if (c == 0) return; pchar(c); } } void pint (int i) { int lead = 0; if (i<0) pchar('-'); for (int d=10000; d>0; d=d/10) { int j = i/d; if (j!=0 || lead || d==1) { pchar(abs(j)+'0'); lead=1;} i = i - j*d; } } void pln () { pchar('\r'); } void pfl () { if (LastPrint != '\r') pchar('\r'); } void printobject(object *form){ if (form == NULL) pfstring(F("nil")); else if (listp(form) && issymbol(car(form), CLOSURE)) pfstring(F("")); else if (listp(form)) { pchar('('); printobject(car(form)); form = cdr(form); while (form != NULL && listp(form)) { pchar(' '); printobject(car(form)); form = cdr(form); } if (form != NULL) { pfstring(F(" . ")); printobject(form); } pchar(')'); } else if (form->type == NUMBER) { pint(integer(form)); } else if (form->type == SYMBOL) { if (form->name != NOTHING) pstring(name(form)); } else if (form->type == STRING) { printstring(form); } else if (form->type == STREAM) { pfstring(F("<")); if ((form->integer)>>8 == SPISTREAM) pfstring(F("spi")); else if ((form->integer)>>8 == I2CSTREAM) pfstring(F("i2c")); else pfstring(F("serial")); pfstring(F("-stream ")); pint(form->integer & 0xFF); pchar('>'); } else error(F("Error in print.")); } int gchar () { if (LastChar) { char temp = LastChar; LastChar = 0; return temp; } while (!Serial.available()); char temp = Serial.read(); if (temp != '\r') pchar(temp); return temp; } object *nextitem() { int ch = gchar(); while(isspace(ch)) ch = gchar(); if (ch == ';') { while(ch != '(') ch = gchar(); ch = '('; } if (ch == '\r') ch = gchar(); if (ch == EOF) exit(0); if (ch == ')') return (object *)KET; if (ch == '(') return (object *)BRA; if (ch == '\'') return (object *)QUO; if (ch == '.') return (object *)DOT; // Parse string if (ch == '"') return readstring('"'); // Parse variable or number int index = 0, base = 10, sign = 1; char *buffer = SymbolTop; int bufmax = SYMBOLTABLESIZE-(buffer-SymbolTable)-1; // Max index unsigned int result = 0; if (ch == '+') { buffer[index++] = ch; ch = gchar(); } else if (ch == '-') { sign = -1; buffer[index++] = ch; ch = gchar(); } else if (ch == '#') { ch = gchar() | 0x20; if (ch == 'b') base = 2; else if (ch == 'o') base = 8; else if (ch == 'x') base = 16; else error(F("Illegal character after #")); ch = gchar(); } int isnumber = (digitvalue(ch) ((unsigned int)32767+(1-sign)/2)) error(F("Number out of range")); return number(result*sign); } int x = builtin(buffer); if (x == NIL) return nil; if (x < ENDFUNCTIONS) return symbol(x); else if (index < 4 && valid40(buffer)) return symbol(pack40(buffer)); else return symbol(longsymbol(buffer)); } object *readrest() { object *item = nextitem(); if(item == (object *)KET) return NULL; if(item == (object *)DOT) { object *arg1 = read(); if (readrest() != NULL) error(F("Malformed list")); return arg1; } if(item == (object *)QUO) { object *arg1 = read(); return cons(cons(symbol(QUOTE), cons(arg1, NULL)), readrest()); } if(item == (object *)BRA) item = readrest(); return cons(item, readrest()); } object *read() { object *item = nextitem(); if (item == (object *)BRA) return readrest(); if (item == (object *)DOT) return read(); if (item == (object *)QUO) return cons(symbol(QUOTE), cons(read(), NULL)); return item; } void initenv() { GlobalEnv = NULL; tee = symbol(TEE); } // Setup void setup() { Serial.begin(9600); while (!Serial); // wait for Serial to initialize initworkspace(); initenv(); _end = 0xA5; // Canary to check stack pfstring(F("uLisp 1.8")); pln(); } // Read/Evaluate/Print loop void repl(object *env) { for (;;) { randomSeed(micros()); gc(NULL, env); #if defined (printfreespace) pint(Freespace); #endif if (BreakLevel) { pfstring(F(" : ")); pint(BreakLevel); } pfstring(F("> ")); object *line = read(); if (BreakLevel && line == nil) { pln(); return; } if (line == (object *)KET) error(F("Unmatched right bracket")); push(line, GCStack); pfl(); line = eval(line, env); pfl(); printobject(line); pop(GCStack); pfl(); pln(); } } void loop() { if (!setjmp(exception)) { #if defined(resetautorun) autorunimage(); #endif } repl(NULL); }